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A Time-Domain Collocation Meshless Method
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Electromagnetic Transient Analysis
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Sergey Ponomarenko

Abstract—A meshless method with local radial basis functions is pro-
posed for solving the time-domain electromagnetic wave equations. In com-
parison with the conventional radial point interpolation meshless (RPIM)
method that employs and positions dual sets of nodes of both electric and
magnetic field nodes, the proposed method uses only one set of the nodes,
electric field nodes where electric fields are also collocated in space. With
this feature, implementation complexity of the RPIM method is signifi-
cantly reduced, and conformal modeling and muti-scale capabilities of the
RPIM method can now be further explored with higher efficiency. The
time-marching formulations of the proposed method are derived and sta-
bility analysis of the method is presented. Comparisons of the proposed
method with the conventional meshless method are also presented. The ac-
curacy and efficiency of the proposed method are demonstrated through
simulation of an H-shaped cavity and a quarter ring resonator.

Index Terms—Meshless, radial basis function (RBF), time-domain mod-
eling, wave equations.

I. INTRODUCTION

Conventional numerical methods, such as the finite-difference time-
domain (FDTD) method [1], the finite-element method (FEM) [2] and
the method of moment (MoM) [3] are grid or mesh-based techniques.
In those methods, a solution domain is discretized with finite cells or
elements such as cuboids, tetrahedrons, rectangles, or triangles. Edges
of the cells or elements lead to grid or mesh lines and intersections of
the grid or mesh lines form grid points or nodes. As a result, connection
relationships among the nodes are pre-defined due to placements of
the cells or elements. And adaptive gridding or mesh refining in a sub-
region of the solution can become difficult and time-consuming since
the relationship among the nodes has to be redone or redefined through
rearrangement of the cells or elements.
To mitigate the above problem, meshless methods, such as the el-

ement-free Galerkin method [4], the moving least square reproducing
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kernel method [5], the smoothed particle electromagnetic method [6]
and the radial point interpolation meshless (RPIM) method [7] were
successfully developed to solve electromagnetic problems. In partic-
ular, a three dimensional RPIM method for transient electromagnetics
was recently developed in [8] and an unconditionally stable version of
RPIM method was proposed in [9]. However, in these methods, dual
sets of nodes ( -nodes for electric fields and -nodes for magnetic
fields) are needed and spatially interlaced due to coupling nature of
the electric and magnetic fields. Such an interlaced placement of the
- and -nodes poses a challenge in implementation of the meshless

methods. This is because they have to be properly positioned to cor-
rectly reflect the coupling relationship between electric and magnetic
fields. Usually, the -nodes are first placed in a structure to be modeled
and then the -nodes are generated through Voronoi tessellation [10].
For large and complex structures, this node generation process can be-
come quite time-consuming.
In this communication, we propose a node collocating time-domain

three-dimensional RPIM method for transient analysis of EM prob-
lems. In it, instead of solving coupled Maxwell’s equations directly,
the time-domain wave equations are solved with only the -nodes at
which all three electric fields can be collocated. The point interpolation
based on the local radial basis function (RBF) is employed. As only one
set or type of nodes is dealt with for solutions of the wave equations,
the proposed collocated time-domain RPIM method not only reduces
implementation complexity but also improves modeling efficiency, in
comparison to other meshless methods [4]–[9]. Several aspects of the
proposed method are then discussed in this communication.
The communication is organized in the following manner. In

Section II, the generalized formulas of the proposed method are
developed. In Section III, the source and boundary conditions are
introduced. In Section IV, the stability condition of the method is de-
rived analytically. In Section V, the numerical examples are presented
to assess the conformal and multiscale modeling capabilities of the
method. Finally, the conclusions are drawn in Section VI.

II. THE PROPOSED MESHLESS METHOD

We consider a linear, non-dispersive and isotropic media with per-
mittivity and permeability , in a homogenous source free region.
The time-domain vector wave equations for the electrical field are then

(1)

where . They may be expanded into three scalar wave
equations with respect to each electric field component. Take field
as an example, we have

(2)

Since only component is the quantity to be solved in (2), one set
of the electric field nodes ( -nodes) is required to be spatially defined
in the solution domain. In this work, the -nodes are defined in the way
similar to that used in the point-matched time-domain finite-element
method [15].
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To obtain the numerical solutions of equation (2), the electric fields
are approximated in terms of the shape functions

(3)

where , and , and is the shape function vector associated
with the nodes in a local support domain with the dimension of
(where is the number of -nodes in a local support domain. are
the unknown field value vector at each scattering nodes to be found.
The shape function vector can be expressed as ,
where with

...
...

...

(4)
and is the vector of radial basis functions. We select Gaussian func-
tion as the radial basis function since it is claimed to
have better performance than other types of functions, such as multi-
quadric (MQ) function, for derivative involved interpolation [13]. It is
expressed as

(5)

where is the
Euclidean distance between and , is the center of the th node
position and is the shape parameter that controls the decaying rate of
Gaussian function.
Once the shape function is defined, the second order partial deriva-

tives can be analytically found as

(6)

With the time derivatives approximated by its second-order cen-
tral finite-difference counterpart, the wave equation (2) can then be
reformulated and solved for with the following node-based time-
marching meshless formulation

(7a)

By applying the similar procedure to the other two electric field com-
ponents, we can obtain

(7b)

(7c)

The above equations form the time-marching formulations of the pro-
posed meshless method. is the time step. Note that the three electric
field components, , and , can be collocated at every
node.

III. IMPLEMENTATION OF SOURCE AND BOUNDARY CONDITIONS

The time-marching formulations (7) are for the source-free regions.
For a region with current sources, additional terms will be present on
the right-hand side of (7) as described below. After that, we will indi-
cate how boundary conditions are implemented.

A. Sources Implementation

When current sources or excitations are present, the vector wave
equations can be found as

(8)

where is the current density.
It can be seen that (8) cannot be expanded into a decoupled wave

equation like (2) due to the nonzero divergence of the electric field on
the right hand side of (8). There are two additional terms on the right
hand side of (8) in comparison with (2) (this is for a source-free region).
Fortunately, if we apply the central finite-difference scheme to the left
hand side of (8) at the th time step, these two additional terms are of
the th time step which are known. In fact, all the terms on the right
hand side of (8) are of the th time step which are known. Take the
as an example. Application of the finite difference to (8) leads to

(9)

As seen, all the terms on the right hand side of (9) are the known values
of the th and th time steps and they can be computed and
used to predict the new of the th time step. In other words,
the proposed method can be simply applied to either a source region
or a source-free region with or without the known additional terms,
respectively.

B. Boundary Conditions Implementations

Since three electric components are co-located at every node,
boundary conditions need to be carefully handled. In this communi-
cation, the application of boundary conditions is simplified by only
considering 3 D cavity and resonator structures of regular geometry, in
addition, only the component is excited with the current source. For
more general applications of the boundary conditions, the approach
presented in [16] for the treatment of dielectric interfaces may be
adapted, and this will be one of the topics in our future study.

IV. STABILITY ANALYSIS

Since the proposed meshless method is an explicit time-marching
scheme, it is conditionally stable. To derive its stability condition, the
transform technique [17] is applied to (6), and the marching equation

in the -domain is obtained

(10)

where and is the unknown coefficient vector of
interest in the -domain.
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Fig. 1. Geometry of the H-shaped cavity.

Suppose is the eigenvalue ofmatrix which embodies node
location information and material properties. Then from (10), we have

(11)

where (11) is the characteristic equation [17]. To ensure the stability
of the proposed meshless method, z should be located on or within the
unit circle, that is, . In other words, the absolute upper bound
of (denoted as ), as the result of the condition of ,
will lead to a relation between the spatial discretization and maximum
time step that has to be satisfied to ensure the stability.
Mathematically, to ensure , the following condition can be

derived from (10):

(12)

where is the spectral radius of .
For homogeneous media, can be found from (11) for

all . Therefore, all temporal steps in the proposed meshless
method should satisfy the following condition:

(13)

V. NUMERICAL VERIFICATIONS AND DISCUSSION

In this section, two numerical experiments are presented to eval-
uate the accuracy and efficiency of the proposed meshless method.
The conformal and multiscale modeling capabilities of method are also
demonstrated.

A. H-Shaped Cavity

The first numerical example is an air-filled H-shaped cavity with
perfect electric conducting walls. The computational domain is of

(scaled at 3 GHz) as shown in Fig. 1. The cavity
was discretized with non-uniformly distributed -nodes as depicted
in Fig. 2. The node density in the central region is 1.5 times of that of
the remaining region where the smallest distance between the nodes
is . The shape parameter was chosen as 10. The cavity was
excited with a modulated differential Gaussian pulse with function of

where ,
and . It is placed at one end of the

cavity. Thus, the bandwidth of the excitation (or source) is 6 GHz. The
observation point is placed at the other end as shown Fig. 1 (a). Only

Fig. 2. Non-uniform nodal distribution within the H-shaped cavity resonator
with the smallest distance between two nodes being .

Fig. 3. The component in the time domain obtained with the proposed
meshless method for the wave equation and the conventional RPIM method
for the first order Maxwell’s equation with non-uniform nodal distribution and
the FDTD method with the uniform fine grid size of .

Fig. 4. The component in the frequency domain obtained with the proposed
meshless method and the FDTDmethod with the uniform fine grid size of .

component was excited and the modes having the component
were simulated.
The simulated electric fields recorded at the observation point in the

time and frequency domain with a time step equal to the maximum
FDTD time step of 7.18 are plotted in Fig. 3 and Fig. 4. The re-
sults obtained from the conventional RPIMmethod (solvingMaxwell’s
equations and using the same E-node distribution) and the results ob-
tained with the conventional FDTD method (using a grid size of )
are also shown for comparisons. It can be seen that the results obtained
with the proposed meshless method agree well with the conventional
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TABLE I
COMPARISON OF THE TIME AND MEMORY USED BY THE PROPOSED MESHLESS
METHOD, THE FDTD METHOD AND THE CONVENTIONAL RPIM METHOD

TABLE II
COMPARISON OF THE COMPUTATIONAL ERROR OF THE FDTD METHOD
WITH DIFFERENT DISCRETIZATION AND THE PROPOSED METHOD

FDTD method with some small differences in the late time of the sim-
ulation. For the conventional RPIM method, it has larger differences
from the FDTD results than the proposed method. In the frequency do-
main, the resonant frequencies obtained from the conventional RPIM
method show a small frequency shift towards higher frequency regions.
However, the results from the proposed method are not visibly distin-
guishable from those of the FDTD method (as shown in Fig. 4). In
other words, the above-mentioned differences of the time-domain re-
sults between the proposed method and the FDTD method are those
of high-frequency components that fall outside the frequency range of
interest. The proposed meshless method has a similar level of accuracy
to the FDTD method but uses coarser grids.
Table I lists the total number of unknowns and computational time

with the proposedmeshless method, the FDTDmethod and the conven-
tional RPIMmethod. Note that the computational time for the meshless
method includes that for constructing the shape functions. We can find
that number of unknowns with the proposed method is only 1/4.6 that
of the conventional RPIM method. And the computation time is only
1/8.3 that of the conventional RPIM method. We can also see that the
proposed method can achieve the same accuracy with higher efficiency
compared with the conventional RPIM method.
In reference to the FDTD simulations with and , respec-

tively, the number of unknowns required with the proposed method is
about 1/30 and 1/4 of that of the FDTDmethod, respectively. There are
two reasons for it: (a) -field nodes are collocated at the same point
in the proposed method due to the decoupled nature of the wave equa-
tions, and (b) the conformal modeling and multiscale capabilities of
the meshless method allow easy or adaptive discretization refinement
of a structure. Due to the smallest number of unknowns of the pro-
posedmethod compared with the FDTDmethod and the RPIMmethod,
the efficiency of the proposed method is the highest among the three
methods.

Fig. 5. Geometry of the quarter ring resonator.

Fig. 6. Node distribution of the quarter ring resonator cavity.

Fig. 7. component in the time domain obtained with the proposed meshless
method and the FDTD method with the fine grid size of .

Table II shows the errors of the first resonant frequency calculated by
the FDTD method with , and and the proposed mesh-
less method with non-uniform node distribution. In the Table, the result
from the FDTDmethod with is selected as the reference solution.
It is found that all errors are quite small for both the FDTDmethod with
different discretization and the proposed method. However, the errors
of both the proposed method and the FDTD method are around
0.2%. In other words, the proposed method can achieve the same ac-
curacy level as the FDTD method with but with less dense node
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Fig. 8. component in the frequency domain obtained with the proposed
meshless method and the FDTD method with the fine grid size of .

TABLE III
COMPARISON OF THE TIME AND MEMORY USED BY THE PROPOSED

MESHLESS METHOD AND THE FDTD METHOD

distribution. That is the main reason that we have chosen the FDTD
method with for comparisons with the proposed method.

B. Quarter Ring Resonator

An air-filled quarter ring resonator was simulated to further demon-
strate the conformal and multiscale modeling capabilities of the pro-
posed meshless method. The inner and outer radii are 0.6 and 1.2
and the height of the resonator is 0.3 (scaled at 3 GHz). Fig. 5 shows
the geometry of the quarter ring resonator. The nodal distribution is
depicted in Fig. 7. As can be seen, a radial node distribution pattern is
applied here: the nodes are denser close to the inner conducting wall
and coarser towards the outer conducting wall. The cavity is excited
with a Gaussian pulse of where

, and . The excitation is located
at the center of the cavity with the band width of 6 .
The electric fields obtained from the proposed meshless method and

the FDTD method in both time and frequency domains at the obser-
vation point are plotted in Fig. 7 and Fig. 8. The number of the un-
knowns and the computational time for both methods are shown in
Table III. Again, good agreements between the results obtained with
the proposed method and the FDTD method are observed.

VI. CONCLUSION

In this communication, a time-domain meshless collocation-RPIM
method based on the local radial basis function is formulated and pre-
sented for solutions of time-domain wave equations. As all the elec-
tric (and magnetic) field can be collocated at every node, the proposed
method is easier to implement and has higher computational efficiency.
The stability analysis shows the proposed method is computationally

stable under the same criterion of the conventional RPIMmethod.With
the ease of nodal distribution, the conformal and multiscale modeling
capabilities of meshless methods can now be further exploited.
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