
ECED 6400
Homework Assignment

1. Total internal reflection at isotropic-uniaxial medium interface
Consider an extraordinary plane electromagnetic wave, incident from a uniaxial crystal with

dielectric constants ε1⊥ and ε1|| onto the interface z = 0, separating the crystal from a transparent

isotropic medium with the dielectric constant ε2. The optical axis of the crystal is perpendicular

to the interface. Under what condition(s) among the parameters ε1⊥, ε1||, and ε2, does total

internal reflection take place? Repeat the problem for the optical axis of the crystal parallel to the

interface.

Hint. You have to obtain conditions similar to ε2 > ε1 for isotropic media. Make sure that your

result reduces to the conventional one in the isotropic medium limit.

2. Short pulse propagation in resonant linear absorbers: Energy losses
Starting, for example, from a general expression for a pulse envelope at any propagation distance

within a homogeneously broadened linear absorber, address the following questions.

(a) Consider the pulse energy, defined as

W (z) ∝
∫ ∞
−∞

dt|E(t, z)|2,

Using the properties of Fourier transforms, show that the energy attenuation factor, Γ(z) =

W (Z)/W (0), is given by

Γ(z) =

∫∞
−∞ dν|Ẽ(ν)|2 exp

(
− 2αz

1+ν2T 2

)
∫∞
−∞ dν|Ẽ(ν)|2

.

Here Ẽ(ν) is a spectral amplitude of the pulse at z = 0, and T is a dipole relaxation time.

(b) Specify to a Gaussian pulse, E(t, 0) ∝ e−t
2/2T 2

p . Using the asymptotic method for integral

evaluation outlined in the Appendix, show that for sufficiently long propagation distances, αz �

1, the energy attenuation factor of an ultrashort Gaussian pulse (Tp � T ) is

Γ∞(z) ' exp
(
−2Tp
T

√
2αz

)
.

(c) Compare the behavior of Γ∞(z) with that of a long pulse, Γ0(z) = e−αz, in the long-term limit

αz � 1. How can you explain anomalously low energy loss rates of ultrashort pulses?
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3. Symmetries of nonlinear optical susceptibilities in isotropic media
Use the invariance of χ(3)

ijkl in isotropic media with respect to rotations by 45◦ around the z-axis to

derive the following relation among the components of χ(3)
ijkl

χ(3)
xxxx = χ(3)

xxyy + χ(3)
xyyx + χ(3)

xyxy.

4. Third harmonic generation: Beyond undepleted pump approximation
Consider the THG process for the case of plane wave geometry and perfect phase matching. In

these conditions, the coupled wave equations derived in class simplify to

dEω
dz

=
3iωχ

(3)
eff

2nωc
E3ωE∗2ω

and
dE3ω
dz

=
3iωχ

(3)
eff

2n3ωc
E3ω

To simplify algebra slightly you may assume that χ(3)
eff is real which works for lossless media.

(a) Introducing dimensionless amplitudes Aω and A3ω viz.,

Eω =

√
2I

ε0nωc
Aωeiφω , E3ω =

√
2I

ε0n3ωc
A3ωe

iφ3ω ,

derive the two integrals of motion,

A2
ω +A2

3ω = 1, (power conservation),

and

A3ωA3
ω cos θ = Γ,

where θ = φ3ω − 3φω.

(b) Consider the particular case θ = π/2, implying that Γ = 0. Find and sketch the dependence of

the fundamental and third harmonic modes on ζ . Assume that at ζ = 0 all power resides with the

fundamental.

(c) Estimate the efficiency of THG process in a 1 cm long glass sample, n3ω ' nω ∼ 1.5 by a cw

laser with P = 1 W. Assume that λ ∼ 5× 10−5 cm and the laser light beam is tightly focused to a

size of about 10−2 cm. How does the efficiency change if a pulsed laser source with P = 1 kW is

used instead?
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Appendix

1. Gaussian integrals
You may find useful the following Gaussian integrals

∫ +∞

−∞
dxe−ax

2

=

√
π

a
, (1)

and ∫ +∞

−∞
dxe−ax

2+bx =

√
π

a
exp

(
b2

4a

)
. (2)

2. Laplace method for asymptotic evaluation of integrals

Consider an integral

I =
∫ +∞

−∞
dxe−λf(x),

for an arbitrary real function f(x) in the limit of very large λ (λ→ +∞). The main contribution

to the integral comes from the neighborhood of the point at which f attains minimum. Let us call

such a point x0, and expand f in the vicinity of x0 in a Taylor series up to the second order:

f(x) ' f(x0) +
1

2!
f ′′(x0)(x− x0)2.

Here at x0

f ′(x0) = 0, f ′′(x0) > 0.

The integral I is then

I ' e−λf(x0)
∫ +∞

−∞
dxe−λf

′′(x0)(x−x0)2/2.

Introducing the variable s = x− x0, we can rewrite the integral as

I ' e−λf(x0)
∫ +∞

−∞
dse−λf

′′(x0)s2/2.

The integral on the r.h.s. can be evaluated using Eq. (1). The result is

I '
√

2π

λf ′′(x0)
e−λf(x0). (3)

In case of multiple minima xk, Eq. (3) is naturally generalized to

I '
∑
k

√
2π

λf ′′(xk)
e−λf(xk). (4)
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