Third-order nonlinear effects

Sergey A. Ponomarenko

Dalhousie University

Outline

- Coupled-wave equations for 3rd-order processes
- Third-harmonic generation (SHG)
- Phase-matching considerations
- Self-focusing \& soliton formation
- Polarization effects in nonlinear optics
- Kerr electro-optical effect

Coupled-wave equations for 4 -wave mixing

$$
\begin{aligned}
& \frac{\partial \mathscr{E}_{s}}{\partial z}-\frac{i}{2 k\left(\omega_{s}\right)} \nabla_{\perp}^{2} \mathscr{E}_{s}=\frac{i \omega_{s}^{2}}{2 k\left(\omega_{s}\right) c^{2}} \\
& \times \chi_{e f f}^{(3)}\left(-\omega_{s} ; \omega_{1}, \omega_{2}, \omega_{3}\right) \mathscr{E}_{1} \mathscr{E}_{2} \mathscr{C}_{3} e^{i \Delta k z}
\end{aligned}
$$

Effective nonlinear susceptibility:

$$
\begin{aligned}
& \chi_{e f f}^{(3)}\left(-\omega_{s} ; \omega_{1}, \omega_{2}, \omega_{3}\right) \equiv c^{(3)}\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \\
& \quad \times \sum_{i j k l} \tilde{\chi}_{i j k l}^{(3)}\left(-\omega_{s} ; \omega_{1}, \omega_{2}, \omega_{3}\right) \mathbf{e}_{i}\left(\omega_{s}\right) \mathbf{e}_{j}\left(\omega_{1}\right) \mathbf{e}_{k}\left(\omega_{2}\right) \mathbf{e}_{l}(
\end{aligned}
$$

Phase mismatch:

$$
\Delta k \equiv k\left(\omega_{1}\right)+k\left(\omega_{2}\right)+k\left(\omega_{3}\right)-k\left(\omega_{s}\right)
$$

Application: Third-harmonic generation

$$
\Delta k=3 k(\omega)-k(3 \omega)
$$

Coupled-wave equations in plane-wave goemetry:

$$
\begin{gathered}
\frac{d \mathscr{E}_{\omega}}{d z}=\frac{3 i \omega}{2 n_{\omega} c} \chi_{e f f}^{(3)} \mathscr{E}_{3 \omega} \mathscr{E}_{\omega}^{* 2} e^{-i \Delta k z} \\
\frac{d \mathscr{E}_{3 \omega}}{d z}=\frac{3 i \omega}{2 n_{3 \omega} c} \chi_{e f f}^{(3)} \mathscr{E}_{\omega}^{3} e^{i \Delta k z}
\end{gathered}
$$

Efficiency estimate in solids:

- Input intensity $I \sim 100 \mathrm{MW} / \mathrm{cm}^{2}$ (dielectric breakdown in solids);
- crystal length $L \sim 1 \mathrm{~cm}$;
- nonlinearity: $\chi_{\text {eff }}^{(3)} \sim 10^{-21} \mathrm{~m}^{2} / \mathrm{W}^{2}$

$$
\eta_{T H G} \sim 5 \times 10^{-7} \ll 1, \Longrightarrow \text { no way! }
$$

Can be realized in gases as a two-stage process:

$$
F W \Longrightarrow S H \Longrightarrow T H
$$

Self-focusing \& spatial soliton formation

Beam propagation in a $\chi^{(3)}$-medium

- Diffraction of a beam of size w_{0}
- Self-focusing nonlinearity,

$$
\Delta n_{N L} \sim \bar{n}_{2} I_{0}>0
$$

Diffraction length:

$$
L_{D} \simeq k w_{0}^{2}
$$

Nonlinear length:

$$
k \Delta n_{N L} L_{N L} \sim 1
$$

implying

$$
L_{N L} \sim \frac{1}{k \bar{n}_{2} I_{0}}
$$

- Balance of the two effects \Longrightarrow optical soliton

Optical solitons $\Longrightarrow L_{N L}=L_{D}$

- Critical power for soliton formation:

where

$$
\lambda_{0}=2 \pi / k_{0}=2 \pi c / \omega
$$

- $L_{D} \ll L_{N L}$, linear regime, diffraction dominates;
- $L_{N L} \ll L_{D}$, self-phase modulation dominates

Estimating the focusing length:

$$
z_{f} \simeq \frac{L_{D}}{2} \sqrt{\frac{P_{c r} n_{0}}{P}}
$$

with

$$
P \gg P_{c r}
$$

Mathematical description of self-focusing

$$
\begin{aligned}
& \frac{\partial \mathscr{E}_{\omega}}{\partial z}-\frac{i}{2 k_{\omega}} \nabla_{\perp}^{2} \mathscr{E}_{\omega}=\frac{i \omega^{2}}{2 k_{\omega} c^{2}} \chi_{e f f}^{(3)}(-\omega ; \omega,-\omega, \omega) \\
& \times\left|\mathscr{E}_{\omega}\right|^{2} \mathscr{E}_{\omega} \\
& \chi_{e f f}^{(3)} \equiv \frac{3}{4} \sum_{i j k l} \tilde{\chi}_{i j k l}^{(3)}(-\omega ; \omega,-\omega, \omega) \\
& \Varangle \mathbf{e}_{i}(\omega) \mathbf{e}_{j}(\omega) \mathbf{e}_{k}(\omega) \mathbf{e}_{l}(\omega)
\end{aligned}
$$

Self-phase modulation regime

 Introduce linear and nonlinear losses:$$
\left|\mathscr{E}_{\omega}\right|^{2}=\left|\tilde{\mathscr{E}}_{\omega}\right|^{2} e^{-\alpha(\omega) z}
$$

and

$$
\begin{gathered}
\chi^{(3)}(\omega)=\chi_{r}^{(3)}(\omega)+i \chi_{i}^{(3)}(\omega) \\
\frac{\partial \tilde{\mathscr{E}}_{\omega}}{\partial z}=\frac{i \omega^{2}}{2 k_{\omega} c^{2}} \chi^{(3)}(\omega)\left|\tilde{\mathscr{E}}_{\omega}\right|^{2} \tilde{\mathscr{E}}_{\omega} e^{-\alpha(\omega) z} \\
\tilde{\mathscr{E}}_{\omega}=\left|\tilde{\mathscr{E}}_{\omega}\right| e^{i \Phi_{\omega}}
\end{gathered}
$$

$\$ 4$
Δ
\checkmark
\downarrow
Back
Close

Intensity evolution

$$
I(\rho, z)=\frac{I_{0}(\rho) e^{-\alpha z}}{1+\beta_{2} I_{0}(\rho) L_{\mathrm{eff}}(z)}
$$

Effective interaction length:

$$
L_{\mathrm{eff}}=\frac{1}{\alpha}\left(1-e^{-\alpha z}\right)
$$

Two-photon absorption coefficient:

$$
\beta_{2}=\frac{3 k_{0} \chi_{i}^{(3)}}{2 \varepsilon_{0} n_{0}^{2} c}
$$

Two-photon absorption in semiconductors

Phase Evolution: Nonlinear lens

$$
\Delta \Phi(\rho) \simeq-\frac{k_{0} \bar{n}_{2} I_{0} \rho^{2}}{2 w_{0}^{2}} \Delta L
$$

Assume linearly polarized beam:

$$
P_{N L}=\frac{3}{4} \varepsilon_{0} \chi^{(3)}|\mathscr{E}|^{2} \mathscr{E}=\varepsilon_{0} \chi_{N L} \mathscr{E}
$$

Total refractive index:

$$
n_{t o t}=n_{L}+n_{N L}
$$

Nonlinear refractive index

$$
n_{N L}=n_{2}|\mathscr{E}|^{2}=\bar{n}_{2} I
$$

Optical intensity:

$$
I=\frac{\varepsilon_{0} c n_{0}}{2}|\mathscr{E}|^{2}
$$

Connection between two nonlinear coefficients

$$
n_{2}\left[m^{2} / V^{2}\right]=\frac{\varepsilon_{0} c n_{0}}{2} \bar{n}_{2}\left[m^{2} / W\right]
$$

Soliton units:

- Propagation distance: $Z=z / L_{D}$;
- Spatial coordinate: $X=x / w_{0}$;
- Soliton order parameter:

Dimensionless wave equation

- $\mathscr{N}=1 \Longleftrightarrow P=P_{\text {cr }}$, fundamental soliton:

$$
U(Z, X)=\operatorname{sech} X e^{-i Z / 2}
$$

Profile does not change on propagation!

- Space-time analogy \Longrightarrow temporal solitons
- Propagation distance $Z=z / L_{d i s}, L_{d i s}=T_{\mathrm{p}}^{2} / \beta_{2}$;

Time: $T=t / T_{\mathrm{p}}$

- Fundamental soliton: $U(Z, T)=\operatorname{sech} T e^{-i Z / 2}$; - Higher-order solitons (breathers):

Z-scan technique to measure nonlinear refractive index

$$
T\left(L_{a}, \Delta \phi\right) \equiv \frac{I\left(z_{s}+L_{a}, \rho=0, \Delta \phi\right)}{I\left(z_{s}+L_{a}, \rho=0, \Delta \phi=0\right)}
$$

$$
\begin{gathered}
T_{\max }-T_{\min } \approx 0.406 \Delta \phi \\
\Delta \phi=k_{0} \bar{n}_{2} I_{0} \Delta L
\end{gathered}
$$

Polarization dynamics of third-order pro-

 cesses
Isotropic media with inversion symmetry

By symmetry:

$$
\begin{gathered}
\chi_{x x x x}^{(3)}=\chi_{y y y y}^{(3)}=\chi_{z z z z}^{(3)}, \\
\chi_{x x y y}^{(3)}=\chi_{x x z z}^{(3)}=\chi_{y y x x}^{(3)}=\chi_{y y z z}^{(3)}=\chi_{z z y y}^{(3)}=\chi_{z z x x}^{(3)}, \\
\chi_{x y x y}^{(3)}=\chi_{x z x z}^{(3)}=\chi_{y z y z}^{(3)}=\chi_{z x z x}^{(3)}=\chi_{z y z y}^{(3)}=\chi_{y x y x}^{(3)}, \\
\chi_{x y y x}^{(3)}=\chi_{y x x y}^{(3)}=\chi_{x z z x}^{(3)}=\chi_{z x x z}^{(3)}=\chi_{y z z y}^{(3)}=\chi_{z y y z}^{(3)} .
\end{gathered}
$$

14
$>$
Δ
\downarrow
Back
Close

Rotational invariance:

$$
\chi_{x x x x}^{(3)}=\chi_{x x y y}^{(3)}+\chi_{x y y x}^{(3)}+\chi_{x y x y}^{(3)}
$$

etc. General form:

$$
\begin{align*}
\chi_{i j k l}^{(3)}= & \chi_{x x y y}^{(3)} \delta_{i j} \delta_{k l} \\
& +\chi_{x y x y}^{(3)} \delta_{i k} \delta_{j l}+\chi_{x y y x}^{(3)} \delta_{i l} \delta_{j k} \tag{5}
\end{align*}
$$

In particular, for self-focusing

$$
\begin{align*}
\chi_{i j k l}^{(3)}= & \chi_{x x y y}^{(3)}\left(\delta_{i j} \delta_{k l}+\delta_{i l} \delta_{j k}\right) \\
& +\chi_{x y x y}^{(3)} \delta_{i k} \delta_{j l} . \tag{6}
\end{align*}
$$

Nonlinear polarization in Maker\& Terhune notations:

$$
\mathscr{P}_{N L}=\varepsilon_{0}\left[A\left(\mathscr{E} \cdot \mathscr{E}^{*}\right) \mathscr{E}+\frac{1}{2} B(\mathscr{E} \cdot \mathscr{E}) \mathscr{E}^{*}\right]
$$

where two independent coefficients are introduced:

$$
A \equiv \frac{3}{2} \chi_{x x y y}^{(3)}, \quad B \equiv \frac{3}{2} \chi_{x y x y}^{(3)}
$$

Evolution of elliptical polarization in isotropic nonlinear media

$$
\mathscr{E}=\mathscr{E}_{+} \mathbf{e}_{+}+\mathscr{E}_{-} \mathbf{e}_{-}
$$

Nonlinear polarization field in circular basis

$$
\begin{gathered}
\mathscr{P}_{N L}=\mathscr{P}_{N L}^{(+)} \mathbf{e}_{+}+\mathscr{P}_{N L}^{(-)} \mathbf{e}_{-} \\
\mathscr{P}_{N L}^{(\pm)}=\varepsilon_{0}[\underbrace{A\left|\mathscr{E}_{ \pm}\right|^{2}}_{\mathrm{SPM}}+\underbrace{(A+B)\left|\mathscr{E}_{\mp}\right|^{2}}_{\mathrm{CPM}}] \mathscr{E}_{ \pm}
\end{gathered}
$$

- SPM \Longleftrightarrow self-phase modulation;
- CPM \Longleftrightarrow cross-phase modulation.

Nonlinear susceptibility:

$$
\chi_{N L}^{(\pm)}=A\left|\mathscr{E}_{ \pm}\right|^{2}+(A+B)\left|\mathscr{E}_{\mp}\right|^{2}
$$

Effective refractive index:

$$
n_{ \pm}^{2}=1+\chi_{L}+\chi_{N L}^{(\pm)}
$$

Plane-wave propagation:

$$
\frac{\partial^{2} E_{ \pm}}{\partial t^{2}}-\frac{n_{ \pm}^{2}}{c^{2}} \frac{\partial^{2} E_{ \pm}}{\partial z^{2}}=0
$$

- Each circular polarization propagates unchanged
- Each circular polarization has a slightly different refractive index

Elliptic polarization evolves as:
$\mathbf{E}(z, t)=\left[\mathscr{E}_{+} e^{i \Delta n \omega z / 2 c} \mathbf{e}_{+}+\mathscr{E}_{-} e^{-i \Delta n \omega z / 2 c} \mathbf{e}_{-}\right] e^{i \omega(\overline{n z} / c-t)}$
average refractive index

$$
\bar{n}=n_{L}+\frac{(2 A+B)}{4 n_{L}}\left(\left|\mathscr{E}_{+}\right|^{2}+\left|\mathscr{E}_{-}\right|^{2}\right)
$$

nonlinear birefringence

$$
\Delta n=n_{+}-n_{-}=\frac{B}{2 n_{L}}\left(\left|\mathscr{E}_{-}\right|^{2}-\left|\mathscr{E}_{+}\right|^{2}\right),
$$

Polarization rotation:

$$
\mathbf{E}(z, t)=\left[\mathscr{E}_{+} \mathbf{e}_{+}(z)+\mathscr{E}_{-} \mathbf{e}_{-}(z)\right] e^{i \omega(\bar{n} z / c-t)}
$$

with

$$
\mathbf{e}_{ \pm}(z)=\frac{\mathbf{e}_{x}(z) \pm i \mathbf{e}_{y}(z)}{\sqrt{2}}
$$

where

$$
\begin{aligned}
& \mathbf{e}_{x}(z)=\cos (\Delta n \omega z / 2 c) \mathbf{e}_{x}+\sin (\Delta n \omega z / 2 c) \mathbf{e}_{y} \\
& \mathbf{e}_{y}(z)=\cos (\Delta n \omega z / 2 c) \mathbf{e}_{y}-\sin (\Delta n \omega z / 2 c) \mathbf{e}_{x}
\end{aligned}
$$

Electro-optical Kerr effect

- Mixing of two optical and two dc fields:

$$
\mathscr{P}_{N L}=3 \varepsilon_{0}\left[\chi_{x x y}^{(3)} \mathscr{E}\left(\mathbf{E}_{0} \cdot \mathbf{E}_{0}\right)+2 \chi_{x y x y}^{(3)} \mathbf{E}_{0}\left(\mathscr{E} \cdot \mathbf{E}_{0}\right)\right]
$$

Assuming

- $\mathbf{E}_{0}=E_{0} \mathbf{e}_{x}$;
- $\mathscr{E}=\mathscr{E}_{x} \mathbf{e}_{x}+\mathscr{E}_{y} \mathbf{e}_{y}$

$$
\begin{aligned}
& \mathscr{P}_{N L x}=3 \varepsilon_{0} \chi_{x x x x}^{(3)} E_{0}^{2} \mathscr{E}_{x} \\
& \mathscr{P}_{N L y}=3 \varepsilon_{0} \chi_{x x y y}^{(3)} E_{0}^{2} \mathscr{E}_{y}
\end{aligned}
$$

Plane-wave propagation:

$$
\frac{\partial^{2} E_{x, y}}{\partial t^{2}}-\frac{n_{x, y}^{2}}{c^{2}} \frac{\partial^{2} E_{x, y}}{\partial z^{2}}=0
$$

Plane-wave solutions:

$$
E_{x, y}(z, t)=\mathscr{E}_{x, y} e^{i\left(k_{x, y} z-\omega t\right)}
$$

Wave numbers:

$$
k_{x, y}=\frac{n_{x, y} \omega}{c} .
$$

Assume the same linear refractive index n for both polarizations

Evolution of elliptic polarization:

$$
\mathbf{E}(z, t)=\mathscr{E}_{x}\left[\mathbf{e}_{x}+\mathbf{e}_{y} \tan \theta e^{-i \Delta n \omega z / c}\right] e^{i \omega\left(n_{x} z / c-t\right)}
$$

where

- $\tan \theta=\mathscr{E}_{y} / \mathscr{E}_{x}$
- $\Delta n=3 \chi_{x y x y}^{(3)} E_{0}^{2} / n$
- Polarization rotation through angle:

$$
\Delta \phi_{L}=\frac{\Delta n \omega L}{c}=\frac{2 \pi K E_{0}^{2}}{n} L
$$

- Kerr constant:

$$
K=\frac{\Delta n}{\lambda E_{0}^{2}}
$$

